
PLATEAU
12th Annual Workshop at the
Intersection of PL and HCI

Organizers:
Sarah Chasins, Elena
Glassman, and Joshua
Sunshine

This work is licensed under a
“CC BY 4.0” license.
cb

Conducting Browser-Based User Studies in
Software Engineering
Insights from Behavioral Science
Lavinia Dunagan  ∗1 and Joshua Sunshine  †2

1University of Washington, Seattle, WA
2Carnegie Mellon University, Pittsburgh, PA

Abstract
User studies of software engineers are an invaluable part of the evaluation of new tools in academic software
engineering (SE). Unfortunately, significant barriers to the efficient execution of these user studies still exist.
Researchers in software engineering and related fields continue to struggle with recruiting, orchestration,
experimental design, and IRB approval (Buse 2011). In this paper we address these challenges by comparing
them to problem domains already identified and addressed in the behavioral sciences. We present (1) a survey
of the current frameworks for administering online experiments in behavioral science and (2) a pair of software
engineering-specific tools extending jsPsych, a front-end framework from behavioral science.

Keywords: Research methodology. Tools. Human subjects. Experiments.

1 Introduction
One of the central goals of software engineering and programming languages research is the creation of
new tools for people, e.g., environments, languages, and techniques. User studies of software engineers
are thus an invaluable part of the evaluation of new tools — in order to, for instance, validate that
a new tool does in fact help engineers produce more robust code. Unfortunately, significant barriers
to the efficient execution of these user studies still exist. As a result, user studies evaluating new
programming tools produced by researchers remain uncommon.

Researchers in software engineering and related fields continue to struggle with recruiting, orches-
tration, experimental design, and IRB approval [1]. Software engineering is itself a set of specialized
skills, so among developers there is a wide range of levels of experience with any given combination of
tools; it is especially difficult to recruit people who accurately represent the future users of a tool, and
in fact user studies frequently default to using undergraduate students as subjects (72% of the time,
in one measure of papers from 1993 to 2002) even when the ultimate target audience is developers,
who are themselves notoriously difficult to recruit [2]. Orchestration, or the actual implementation
of an environment (in both the broad and development senses) and the provision of access to that
environment, presents difficulties on the basis of its engineering complexity and the conflict between
realism and control. Experimental design is challenging due to the relative lack of experience many
software engineering researchers have with methodological questions — in contrast to behavioral
scientists, who may themselves lack technical skills that are more expected of scholars in computer
science. Similarly, the process of IRB approval and the primacy of other ethical considerations in
human studies is seen as too great an obstacle by many researchers [2].

The first three challenges described above (recruiting, orchestration, and design) roughly map on
to problem domains already identified and addressed by tools for browser-based behavioral science.
We extend jsPsych, one of these tools, in the creation of our own prototypical tool; jsPsych is a
front-end library, and our solution is focused on orchestration and design of a study timeline (as
opposed to, for instance, server administration). Some specific practices in behavioral science are not
necessarily workable in software engineering, such as recruiting from a general pool of participants like
that of Mechanical Turk [2]. Nonetheless, there are sufficient similarities between the experimental
philosophies of user-focused software engineering and behavioral science on the whole to allow us
to effectively compare the two [3]. Both disciplines involve collecting data on human participants’

∗Email: laviniad@uw.edu
†Email: sunshine@cs.cmu.edu

1/9

https://creativecommons.org/licenses/by/4.0/deed.en
https://orcid.org/0000-0001-7331-2484
https://orcid.org/0000-0002-9672-5297
laviniad@uw.edu
sunshine@cs.cmu.edu


completion of tasks in an experimental context that balances control and relevance to practices ”in
the wild” [1], [4]. In the first place, behavioral software engineering has its roots in an empiricist
turn from the late 90’s and early 00’s which looked to theories of work in other fields to understand
software development [3], [5]. It follows that we may use tools from behavioral science as models for
the extension of methods in software engineering.

Builder for Software Engineering Experiments (BSEE), the system we describe below, uses an
existing framework from psychology; it is intended to illustrate a path towards alleviating the burden
of experimental design and instrumentation, as well as evince some of the challenges of constructing a
tool that is both appropriately general and sufficiently structured.1 Our secondary aim is to compare
and to some extent unify the experimental paradigms in behavioral science and user-focused software
engineering in order to bolster the validity of the latter. In this paper we present (1) a brief survey
of the current state of online experiments in behavioral science with a focus on frameworks, where
we find that current practice already includes tools that are extensible and lend themselves to various
disciplines, and (2) a pair of software engineering-specific tools enabling greater ease of use and
reproducibility: a code editor and testing plugin for one of these formats, jsPsych, and a command-
line wizard for an associated experiment builder [7], [8].

2 Online Experiments in Behavioral Science
Disciplines in the social sciences with a focus on individual behavior (like psychology and linguistics),
hereafter referred to as the behavioral sciences, have a robust ecosystem for online experiments [9]. A
number of services exist for virtually every aspect of behavioral science experimentation, including both
paid and free options. These tools may cover one or more of the aspects of online experimentation
described below.

Prior surveys of the state of online experimentation in behavioral science have presented three
infrastructure requirements, and consequently three categories of tools: “(1) a builder for a browser-
based experiment front-end, (2) a server to host the experiment, and (3) a participant recruitment tool”
[9]. Experiment creation tools, like jsPsych, PsychoPy/PsychoJS, and lab.js, are Javascript-based and
may be modified via both code and provided GUIs (although jsPsych lacks a GUI for this purpose).
Hosting tools include Pavlovia and cognition.run, which provide managed servers and integration with
popular participant management tools. Recruitment generally entails the use of Amazon Mechanical
Turk, Prolific, or CrowdFlower. Gorilla, Testable, and Inquisit all support integrated experiment/task
creation and hosting; however, none of them are free [10]. The hosting sites mentioned, especially the
Experiment Factory, have as a secondary goal reproducibility in experimentation. Consequently, several
of them contain demo repositories or projects one can simply copy (or fork) to begin a new study
[11]. This supports the goal in software engineering of establishing more clear standards surrounding
human-centered tool evaluations [1], [2]. Extending a figure in the paper introducing Gorilla, we
present a taxonomy of browser-based behavioral science frameworks [10]:

Type Name Free Open-source

Hosted
experiment
builder

Gorilla 7 7

Testable 7 7

Inquisit 7 7

Experiment
builder
(GUI)

E-Prime 7 7

PsychoPy Builder 3 3

lab.js 3 3

Experiment
builder
(coding)

jsPsych 3 3

PsychoPy/PsychoJS 3 3

1 We may take as a reference point the Research Through Design paradigm, which holds that the design process, especially
the production of artifacts that embody prior assumptions surrounding a given field’s methodology, can enable broader
exploration of issues in HCI [6].

Dunagan & Sunshine | PLATEAU | v.12 | n.1 | | 2021 2/9



PsychToolBox 3 3

Hosting
service

Pavlovia 3 7

cognition.run 3 7

LIONESS Lab 3 3

Hosting
configuration

JATOS 3 3

The Experiment Factory 3 3

Recruiting
service

Prolific 7 7

Amazon Mechanical Turk 7 7

Table 1. Tools and services for browser-based experiments in behavioral science.

None of the tools listed here explicitly enable fully integrated code editor functionality (i.e. a
text box with autocompletion, syntax highlighting, etc. and the ability to connect to a backend).
While most of the frameworks which expose Javascript could be coerced into operating this way,
and it is even relatively simple to use <iframe> elements to add elements like a read-only CodePen
embedding, none (to our knowledge) support this aspect of software engineering research. That being
said, additions could be made for all three of these areas. As discussed in previous work, desiderata
for controlled experimentation in software engineering include standardized environments, which is in
some sense a hosting issue, and participants with expertise in a given field, which is a recruitment
issue. One behavioral science platform, Lookit, is focused on behavioral science experiments involving
children; it is arguably dealing with its own specialized recruitment problem, and its solution is the
maintenance of a participant pool. We envision something similar in the future as an extension to
our project.

Our interest here is mostly in jsPsych, the framework that we build on as part of our prototype. It
is a tool for building browser-based behavioral science experiments, although it has been extended to
HCI applications (as discussed below) and other fields that do not fall into the category of conventional
psychology; it effectively represents the front-end of one instantiation of an experiment, with some
explicit support for connections to backend and recruiting services like Amazon Mechanical Turk. It
is also supported in some capacity by virtually all of the hosting platforms which allow the use of code
to define experiments. The foundation of jsPsych is the experiment timeline, which is composed of
“trial” blocks and sub-timelines. A typical jsPsych experiment consists of a series of stimuli and during
each a wait for a response from the user, along with one or more surveys and display text. From
the experimenter’s perspective, this entails the declaration of trial blocks representing each of these
phases of the experiment. For example, in the jsPsych demo implementation of a simple reaction
time experiment the “welcome” block is declared in the following manner:

/* define welcome message trial */
var welcome = {
type: "html-keyboard-response",

stimulus: "Welcome to the experiment. Press any key to begin."
};
timeline.push(welcome);

The philosophy of jsPsych is that it should be usable for both experienced programmers of browser-
based behavioral science experiments and those who have not previously worked with programs of any
complexity. It prioritizes extensibility and welcomes additions in the form of plugins. To investigate the
current use of jsPsych, we conducted a brief study of projects tagged with it on a popular behavioral
science hosting platform and a review of its citations.

2.1 Datasets
The results here were drawn mainly from Pavlovia and Web of Science. Pavlovia is a hosting website
created by the maintainers of PsychoPy and its Javascript counterpart, PsychoJS [11]. Its website lists

Dunagan & Sunshine | PLATEAU | v.12 | n.1 | | 2021 3/9



projects according to whether they use PsychoJS, lab.js, or jsPsych; we gathered a corpus of relevant
projects by manually collecting projects from the jsPsych category that were not duplicates, currently
piloting, or demos. This yielded a set of approximately 50 projects. The following plugin-specific data
was drawn from this corpus.

The Web of Science dataset was gathered via a “Cited By” search for the most recent papers
associated with jsPsych (from 2015). Web of Science is human-curated and draws from a specific
set of validated journals, as opposed to “scholarly” sources throughout the Internet, so it is generally
a higher quality resource than Google Scholar given our interest in excluding research that may not
have been completed and published [12].

2.2 Plugin Distribution
We observe that many of the plugins found on Pavlovia are essentially one-offs (some of which are
nonstandard, i.e. not part of vanilla jsPsych), while the classic use of jsPsych includes three fairly
limited groups of basic formats. These groups can be described in brief as those that allow the insertion
of arbitrary text and HTML, those that support surveys, and those that support the insertion of various
kinds of stimuli (audio, image, etc.). For the purposes of software engineering, only the first two are
directly relevant to the common study designs previously described in the literature [2]; given their
popularity, we include them in the CLW described in the following section. As shown in the below
measure, html-keyboard-response and its cousin, html-button-response, are the most popular plugins,
while the survey-* plugins are also widely used (plugins with zero use on Pavlovia are excluded from
the graph):

It is worth noting that while there are 48 official plugins, 18 of the 38 plugins above (the ones
that were used on Pavlovia) were one-offs created specifically for the project they were attached to.
That is, less than half of the official plugins that are part of vanilla jsPsych are used in our corpus,
while almost half of the plugins that are used were created by non-contributor practitioners.

As an aside, the distribution of plugins and packages in similar software ecosystems in general is
also more or less exponential. We also looked at the top 1000 packages in npm (as of August 2019,
the last time when they were publicly pre-computed) and the modules in PsychoJS, and found that
all three have module distributions that can be extremely well-modeled by an exponential of the form
y = m ∗ e(−t ∗ x) + b where m, t, and b are parameters [13].

Dunagan & Sunshine | PLATEAU | v.12 | n.1 | | 2021 4/9



R2 m t b

npm 0.869 3.938 ∗ 104 4.797 ∗ 10−2 1.118 ∗ 103

PsychoPy/PsychoJS 0.997 2.909 ∗ 105 7.073 ∗ 10−1 1.539 ∗ 102

jsPsych 0.962 4.980 ∗ 102 5.090 ∗ 10−1 3.298

2.3 Randomness and Trial Number
The standard jsPsych paradigm of the timeline allows conditional flow and random selection of stimuli
within an experiment; by nature it does not inherently support the management of participants with
respect to other participants’ live responses. However, its flexibility in the form of dynamic parameters
means changes can be made to task details and experiment structure on the basis of the statuses of
outside resources (for instance, one might decide in a behavioral science setting to set participants’
stimulus values according to prior ones to achieve coverage of a stimulus space).

In our survey of jsPsych Pavlovia projects, we found that randomness is widely used — albeit
frequently simply for the generation of random identification numbers. Of the 50 projects surveyed,
23 used randomness for something besides simple identification. Almost all of these 23 projects were
attempting to cover large parts of some stimulus space, and instead of implementing a costly backend
that did this programmatically they selected different stimuli uniformly at random.

2.4 Distribution Across Disciplines
The basic jsPsych framework is used in several disciplines. Using a “Cited By” search of Web of Science,
we found that (unsurprisingly) psychology is the most popular use case of jsPsych, while other fields
that in some way touch on individual behavior (linguistics, neurology, etc.) make appearances. The
figure below represents the disciplinary distribution over time. Notably, papers from the “Behavioral
Research Methods” journal were excluded because of how many of them corresponded to papers
describing other frameworks, while disciplines where less than five papers were published using jsPsych
are not represented here either. “Science & Technology — Other Topics” and “Computer Science”
also generally refer to reviews of online behavioral science frameworks, i.e. they do not connote
original research done using jsPsych.

Only one study using jsPsych, to our knowledge, has been published in a computer science sub-
discipline: Garaialde et al. (2021), a study on gamification and reward placement in apps published
at CHI [14]. This paper recruited 70 subjects through Amazon Mechanical Turk and was hosted on a
university server. The “trials” displayed consisted of data-logging tasks, interspersed with monetary
rewards at different times depending on the condition. The main result was that “[u]sers selected
applications more frequently when rewards were placed closer to the start of the interaction with the
application.” While this is not a tool evaluation, per se, it does evince the preexisting similarities
between behavioral science proper and behavioral software engineering, as well as the advantages of
a tool like jsPsych. The authors emphasize that previous studies in this vein had relied on relatively
simple sequences of tasks and rewards, while this study was interested in more complex (and more
realistic) sequences of decision-making [14].

Dunagan & Sunshine | PLATEAU | v.12 | n.1 | | 2021 5/9



3 BSEE: Plugin and CLW
Our contribution to the landscape of online experimentation is a plugin for jsPsych and an accompany-
ing experiment builder. This experiment builder is divided into a task builder and a group assignment
tool. The plugin for jsPsych, jspsych-code-editor, allows one to define a single coding task (or
“trial”, in the jsPsych paradigm). The experiment builder allows one to describe a jsPsych-based soft-
ware engineering experiment in a small command-line wizard, thus both reducing the knowledge and
effort required to design the experiment and introducing a standard format for jsPsych experiments
created this way.

3.1 jspsych-code-editor Plugin
The code editor plugin consists of a code editor, a test results panel, and the data collection and
experiment-wide displays, typically a progress bar, inherited by all jsPsych plugins. Secure testing
native to the application is currently only possible for Javascript tasks due to the constraints of a
browser-only tool. One can supply a URI to a Jest test file and/or a simple input/output specification
like one shown in the demo; these tests can optionally be run multiple times before submission or
only once, and the results can be either displayed to the participant or hidden. As shown in the
below figure, one can optionally display both the “numeric” test results (the number passed out of
the total) or “verbose” results (the names of the specific tests that were failed). The code editor is

Figure 1. Possible interface for a participant in an experiment based on jspsych and our code editor plugin.

based on Monaco, the code editor underlying VSCode. Consequently, it is highly customizable and
(most importantly for PL researchers) possible to arbitrarily change the syntax highlighting seen by
the user. While these options are not exposed as part of the CLW, since it is unlikely they will be
broadly applicable for the typical experimenter, they can be modified as part of the trial declaration
in the jsPsych file. The primary built-in options are language and starting text, which will likely be
sufficient for most coding tasks writ large.

The output of the plugin is part of the jsPsych data object obtained from the experiment. This
output includes the time taken for each submission, the statuses of the specified tests, and the text of
the editor itself. These are the types of data most commonly used already within software engineering
studies, and with the data provided as part of jsPsych’s broader experiment context it is possible
to associate them with other trials’ results from the same experiment (e.g. to determine whether
a participant solved both a first and a second debugging task faster than another) [1], [2]. The
plugin collects this information for each code submission, instead of at the end of the trial; it thus
introduces a notion of data collection and corresponding feedback that does not require moving on
to a completely separate task (in comparison with most of the vanilla jsPsych plugins).

Dunagan & Sunshine | PLATEAU | v.12 | n.1 | | 2021 6/9



3.2 BSEE Experiment CLW
The second component of our toolbox, the command-line wizard, is itself divided into two tools: a
group assignment interface and a timeline builder. The assignment interface was designed for soft-
ware engineering researchers who may be previously unacquainted with different random assignment
techniques. The intent here is to automate common group assignment patterns. Our wizard takes
in a JSON specification of a set of participants in addition to assignment parameters (the number
of groups, the demographic to balance by) and outputs group assignments for each. One can do
completely random assignment, balanced random assignment, or random assignment balanced by a
demographic feature; the demographic feature can be categorical or numeric.

The timeline builder includes both the actual specification of the tasks through the selection of
options in the wizard and the assignment of those tasks to groups. The selection of options entails
first picking a plugin category to use, then picking plugin-specific features — e.g. a URL for an
external-html task, where an external webpage is being displayed. The four plugin options offered
through the wizard are HTML, survey, code editor, or external webpage. These were included on two
bases: one, that HTML elements and surveys are two of the three most popular jsPsych plugin types in
a behavioral science setting (the other being stimuli), and two, survey-style participant data collection
and programming tasks are critical elements of many software engineering user studies. Indeed, the
three most popular methodologies are interviews and questionnaires, controlled experiments, and web
surveys [1].

As shown below, the model our builder uses is one of a pool of tasks and a pool of groups,
where different sequences of tasks are assigned to different groups. This framework is both flexible
and easily transferable. It avoids some of the complexities of a more explicit experiment/control
interface requiring the modulation of specific tasks, while nonetheless still being able to express
popular study designs (including those where the variable is the presence or absence of a task).
For example, one might have four tasks: a pre-survey, a debugging task, a distinct coding task,
and a post-survey, and three groups, Group 1, Group 2, and Group 3. One could optionally as-
sign the sequence [pre-survey, debugging, coding, post-survey] to Group 1, the sequence
[pre-survey, coding, debugging, post-survey] to Group 2, and the sequence [pre-survey,
coding, post-survey] to Group 3.

The task builder on a whole was heavily influenced by the paradigm used by Testable. The
experiment design interface for that platform is contained in a natural-language form. This amount
of tooling is ideal given that many software engineering researchers do not generally have significant
training in the design of studies with human participants [2]. A comparison is shown below:

Figure 2. Comparison between Testable’s behavioral science experiment builder (left) and our prototypical
command-line experiment design interface (right).

A potential user of the tool is led through a series of questions which lead to an exact specification
of the experiment that is nonetheless relatively easy to understand. Anecdotally, the CLW method
takes less time to specify a small programming task than raw programming for jsPsych, even for those
who have some experience in jsPsych. We envision this effect being more pronounced for those who
may not have used an experiment design framework or designed an experiment at all.

Dunagan & Sunshine | PLATEAU | v.12 | n.1 | | 2021 7/9



4 Conclusion
In this paper we presented a survey of the state of browser-based experimentation tools in the be-
havioral sciences and a prototype motivated by insights from that survey specifically for software
engineering user studies. The tools available to behavioral scientists are diverse and numerous; they
have only increased in diversity and number since the beginning of the COVID-19 pandemic [15]. In
presenting another field’s solutions to several salient challenges in online experimentation, we hope to
encourage more frequent use of user study evaluations in software engineering, especially given their
decline in the past decade [2]. To that end, our jsPsych plugin and command-line wizard prototypes
are built as evidence of the feasibility of online experimentation for software engineering. Systematic
and large-scale empirical studies of human participants in software engineering are both desirable and
possible with limited additions to existing infrastructure.

5 Acknowledgments
We would like to express our appreciation for everyone involved in the REUSE program at Carnegie
Mellon, especially Hita Kambhamettu, who worked with us on the plugin. We thank Thomas LaToza
and Xiaoyin Wang for their collaboration and comments on earlier drafts. We also thank Josh de
Leeuw for his creation and maintenance of jsPsych and his willingness to discuss this project with us.

References
[1] R. P. Buse, C. Sadowski, and W. Weimer, “Benefits and barriers of user evaluation in software engi-

neering research,” in Proceedings of the 2011 ACM International Conference on Object Oriented Pro-
gramming Systems Languages and Applications, ser. OOPSLA ’11, Portland, Oregon, USA: Association
for Computing Machinery, 2011, pp. 643–656, isbn: 9781450309400. doi: 10.1145/2048066.2048117.
[Online]. Available: https://doi.org/10.1145/2048066.2048117.

[2] A. J. Ko, T. D. LaToza, and M. M. Burnett, “A practical guide to controlled experiments of software
engineering tools with human participants,” en, Empirical Software Engineering, vol. 20, no. 1, pp. 110–
141, Feb. 2015, issn: 1382-3256, 1573-7616. doi: 10.1007/s10664-013-9279-3. [Online]. Available:
http://link.springer.com/10.1007/s10664-013-9279-3 (visited on 07/16/2021).

[3] D. Graziotin, P. Lenberg, R. Feldt, and S. Wagner, “Psychometrics in Behavioral Software Engineering: A
Methodological Introduction with Guidelines,” en, arXiv:2005.09959 [cs], Jun. 2021, arXiv: 2005.09959.
[Online]. Available: http://arxiv.org/abs/2005.09959 (visited on 06/14/2021).

[4] W. Labov, “The Social Stratification of (r) in New York City Department Stores,” in Sociolinguistics:
A Reader, N. Coupland and A. Jaworski, Eds., London: Macmillan Education UK, 1997, pp. 168–
178, isbn: 978-1-349-25582-5. doi: 10 . 1007/978 - 1 - 349 - 25582 - 5_14. [Online]. Available: https :
//doi.org/10.1007/978-1-349-25582-5_14.

[5] K. Arnold, “Programmers are people, too: Programming language and api designers can learn a lot
from the field of human-factors design.,” Queue, vol. 3, no. 5, pp. 54–59, Jun. 2005, issn: 1542-7730.
doi: 10.1145/1071713.1071731. [Online]. Available: https://doi.org/10.1145/1071713.1071731.

[6] P. Stappers and E. Giaccardi, “Research through design,” English, in The Encyclopedia of Human-
Computer Interaction, M. Soegaard and R. Friis-Dam, Eds., 2nd. The Interaction Design Foundation,
2017, pp. 1–94.

[7] L. Dunagan, Bsee, https://github.com/se-user-studies/experiment-builder-prototype, 2021.

[8] L. Dunagan and H. Kambhamettu, Jspsych-code-editor, https://github.com/se-user-studies/jspsych-
se-plugin/blob/dc13a8377a0c49f782b7f0fcb6dcde6b2387b0a5/plugins/jspsych-code-editor.js, 2021.

[9] T. Grootswagers, “A primer on running human behavioural experiments online,” en, Behavior Research
Methods, vol. 52, no. 6, pp. 2283–2286, Dec. 2020, issn: 1554-3528. doi: 10.3758/s13428-020-01395-3.
[Online]. Available: http://link.springer.com/10.3758/s13428-020-01395-3 (visited on 07/08/2021).

[10] A. L. Anwyl-Irvine, J. Massonnié, A. Flitton, N. Kirkham, and J. K. Evershed, “Gorilla in our midst:
An online behavioral experiment builder,” en, Behavior Research Methods, vol. 52, no. 1, pp. 388–
407, Feb. 2020, issn: 1554-3528. doi: 10 . 3758 / s13428 - 019 - 01237 - x. [Online]. Available: https :
//doi.org/10.3758/s13428-019-01237-x (visited on 06/11/2021).

Dunagan & Sunshine | PLATEAU | v.12 | n.1 | | 2021 8/9

https://doi.org/10.1145/2048066.2048117
https://doi.org/10.1145/2048066.2048117
https://doi.org/10.1007/s10664-013-9279-3
http://link.springer.com/10.1007/s10664-013-9279-3
http://arxiv.org/abs/2005.09959
https://doi.org/10.1007/978-1-349-25582-5_14
https://doi.org/10.1007/978-1-349-25582-5_14
https://doi.org/10.1007/978-1-349-25582-5_14
https://doi.org/10.1145/1071713.1071731
https://doi.org/10.1145/1071713.1071731
https://github.com/se-user-studies/experiment-builder-prototype
https://github.com/se-user-studies/jspsych-se-plugin/blob/dc13a8377a0c49f782b7f0fcb6dcde6b2387b0a5/plugins/jspsych-code-editor.js
https://github.com/se-user-studies/jspsych-se-plugin/blob/dc13a8377a0c49f782b7f0fcb6dcde6b2387b0a5/plugins/jspsych-code-editor.js
https://doi.org/10.3758/s13428-020-01395-3
http://link.springer.com/10.3758/s13428-020-01395-3
https://doi.org/10.3758/s13428-019-01237-x
https://doi.org/10.3758/s13428-019-01237-x
https://doi.org/10.3758/s13428-019-01237-x


[11] D. Bridges, A. Pitiot, M. R. MacAskill, and J. W. Peirce, The timing mega-study: Comparing a range
of experiment generators, both lab-based and online, Jan. 2020. doi: 10.7717/peerj.9414. [Online].
Available: psyarxiv.com/d6nu5.

[12] A. Martín-Martín, E. Orduna-Malea, M. Thelwall, and E. D. López-Cózar, “Google Scholar, Web of
Science, and Scopus: A systematic comparison of citations in 252 subject categories,” Journal of Infor-
metrics, vol. 12, no. 4, pp. 1160–1177, 2018, issn: 1751-1577. doi: https://doi.org/10.1016/j.joi.2018.
09.002. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1751157718303249.

[13] anvaka, Npm rank, en. [Online]. Available: https://gist.github.com/anvaka/8e8fa57c7ee1350e3491
(visited on 08/23/2021).

[14] D. Garaialde, A. L. Cox, and B. R. Cowan, “Designing gamified rewards to encourage repeated app
selection: Effect of reward placement,” International Journal of Human-Computer Studies, vol. 153,
p. 102 661, 2021, issn: 1071-5819. doi: https : //doi . org/10 .1016/ j . ijhcs . 2021 .102661. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S1071581921000793.

[15] Sydney Wood, Collecting behavioral data online, en. [Online]. Available: https://www.apa.org/science/
leadership/students/collecting-behavioral-data (visited on 07/21/2021).

Dunagan & Sunshine | PLATEAU | v.12 | n.1 | | 2021 9/9

https://doi.org/10.7717/peerj.9414
psyarxiv.com/d6nu5
https://doi.org/https://doi.org/10.1016/j.joi.2018.09.002
https://doi.org/https://doi.org/10.1016/j.joi.2018.09.002
https://www.sciencedirect.com/science/article/pii/S1751157718303249
https://gist.github.com/anvaka/8e8fa57c7ee1350e3491
https://doi.org/https://doi.org/10.1016/j.ijhcs.2021.102661
https://www.sciencedirect.com/science/article/pii/S1071581921000793
https://www.apa.org/science/leadership/students/collecting-behavioral-data
https://www.apa.org/science/leadership/students/collecting-behavioral-data

	Introduction
	Online Experiments in Behavioral Science
	Datasets
	Plugin Distribution
	Randomness and Trial Number
	Distribution Across Disciplines

	BSEE: Plugin and CLW
	jspsych-code-editor Plugin
	BSEE Experiment CLW

	Conclusion
	Acknowledgments

